Microscopic Reaction Dynamics at SPS and RHIC

Steffen A. Bass

Duke University & RIKEN BNL Research Center

- Overview: Transport Theory at RHIC
- Microscopic Transport Models
- Reaction Dynamics in different approaches:
 - Kinetic Evolution
 - Hadrochemistry and Flavor Dynamics
 - Freeze-out
- Summary

Transport Theory at RHIC

The Parton Cascade Model

· initial state

- nucleon structure functions
- elastic form factors

partonic interactions

lo pQCD cross sections

hadronization

phase space coalescence with color neutrality constraint

The UrQMD Model

- elementary degrees of freedom: hadrons, const. (di)quarks
- classical trajectories in phase-space (relativistic kinematics)
- initial high energy phase of the reaction is modeled via the excitation and fragmentation of strings
- 55 baryon- and 32 meson species, among those 25 N*, △* resonances and 29 hyperon/hyperon resonance species
- full baryon-antibaryon and isospin symmetry
- ideal for the description of excited hadronic matter
- main physics input and parameters:
 - cross sections: total and partial cross sections, angular distributions
 - resonance parameters: total and partial decay widths
 - string fragmentation scheme: fragmentation functions, formation time
- An interaction takes place if at the time of closes approach d_{min} of two hadrons the following condition is fulfilled:

$$d_{mn} = \sqrt{\frac{\sigma_{sot}}{\pi}}$$
 with $\sigma_{tot} = \sigma_{tot}(\sqrt{s}, |h_1\rangle, |h_2\rangle$

Meson Baryon Cross Section in UrQMD

model degrees of freedom determine the interaction to be used

Δ*	width	N*	width
Δ ₁₂₃₂	120 MeV	N* ₁₄₄₀	200 MeV
Δ ₁₆₀₀	350 MeV	N* ₁₅₂₀	125 MeV
Δ ₁₆₂₀	120 MeV	N* ₁₅₃₅	150 MeV
Δ ₁₇₀₀	300 MeV	N* ₁₆₅₀	150 MeV
Δ ₁₉₀₀	200 MeV	N* ₁₆₇₅	150 MeV
Δ ₁₉₀₅	350 MeV	N* ₁₆₈₀	130 MeV
Δ_{1910}	250 MeV	N* ₁₇₀₀	100 MeV
Δ ₁₉₂₀	200 MeV	N* ₁₇₁₀	110 MeV
Δ ₁₉₃₀	350 MeV	N* ₁₇₂₀	200 MeV
Δ ₁₉₅₀	300 MeV	N* ₁₉₉₀	300 MeV

> calculate cross section according to:
$$\sigma_{tot}^{MB} = \sum_{R=\Delta,N^+} \frac{2I_R+1}{(2I_B+1)(2I_M+1)} \frac{\pi}{p_{cms}^2} \frac{\Gamma_{R\to MB}\Gamma_{tot}}{(M_R-\sqrt{s})^2 + \frac{\Gamma_{tot}^2}{4}}$$

Nuclear Fluid Dynamics

- transport of macroscopic degrees of freedom
- based on conservation laws: ∂_µT^{µv}=0 ∂_µj^µ=0
- for ideal fluid: T^{µν}= (ε+p) u^µ u^ν p g^{µν} and j_i^µ = ρ_i u^µ
- Equation of State needed to close system of PDE's: p=p(T,ρ_i)
- assume local thermal equilibrium
- initial conditions (i.e. thermalized QGP) required for calculation
- simple case: scaling hydrodynamics
 - assume longitudinal boost-invariance
 - cylindrically symmetric transverse expansion
 - no pressure between rapidity slices
 - conserved charge in each slice

A combined Macro/Micro Transport Model

Hydrodynamics

- micro. transport (UrQMD)
- ideally suited for dense systems
 - model early QGP reaction stage
- well defined Equation of State
 - Incorporate 1st order p.t.
- parameters:
 - initial conditions (fit to experiment)
 - Equation of State

- no equilibrium assumptions
 - model break-up stage
 - calculate freeze-out
- parameters:
 - (total/partial) cross sections
 - resonance parameters (full/partial widths)

matching conditions:

- use same set of hadronic states for EoS as in UrQMD
- perform transition at hadronization hypersurface: generate space-time distribution of hadrons for each cell according to local T and μ_B
- use as initial configuration for UrQMD

Reaction Dynamics in a Parton Cascade

process	p+p	Au+Au
gg → gg	41.4%	43.0%
gg → g*	24.0%	27.0%
$qg \rightarrow qg$	29.8%	26.7%
$qq \rightarrow qq$	3.2%	2.0%
qqbar→qqbar	0.3%	0.2%

dynamics are gluon dominated

- strong decrease in <Q²> vs. time:
 - non-equilibrium nature of initial state: early collisions at large Q²
 - decrease hints at parton rescattering and onset of thermalization
 - Q² scale changes strongly during reaction: no unambiguous pQCD scale

Reaction Dynamics in a String/Hadron Model

- early reaction stage dominated by hadrons from string fragmentations (unformed hadrons)
- exponential decrease in unformed hadron multiplicity (formation time)
- hadrons from sea quarks do not interact during formation time
- valence (di)quark rescattering with cross sections according to AQM
- only important during initial 2-3 fm/c
- system is meson dominated: multiplicity and collision rate one order of magnitude higher than for baryons

t (fm)

Energy Density in String/Hadron Models

sub-hadronic degrees of freedom:

> hadrons created in string fragmentations within their formation time

- ·high energy density dominated by sub-hadronic degrees of freedom
- up to 2000 valence quarks in medium with ε>2 GeV/fm³
- Lattice: ε_{crit} caluclated for infinite time / periodic boundaries
- •RHIC: dynamic system with short lifetime and finite size

Reaction Dynamics in a Macro/Micro Model

initial conditions:

- Quark Gluon Plasma
- EoS with 1st order phase transition
- ➤ T_C=160 MeV
- hadron multiplicities continue to rise after end of mixed phase
- high population of resonances, primordial and due to hadronic rescattering
- •collision rates:
 - peak at end of mixed phase
 - MM and MB interactions dominate
- late kinetic freeze-out after ≈ 35 fm/c

Probing Hadronization Time: Balance Functions

$$B(\Delta y) \equiv \frac{1}{2} \left\{ \rho(+Q, y + \Delta y | -Q, y) - \rho(-Q, y + \Delta y | -Q, y) \right\}$$

▶B(∆y) narrower for late stage hadronization for two reasons:

- 1. lower temperature: $\langle \Delta y \rangle \approx \sqrt{2T/M}$
- High initial dv/dz. diffusion separates early produced pairs

>B(Δy) provides clear signature of late stage hadronization

Chemical Freeze-Out at the Phase Boundary?

- Does the chemical composition of the system significantly change in the hadronic phase?
- Is the chemical composition indicative of conditions at hadronization?
- (anti-)baryon multiplicities change by up to 40%
- Kaon multiplicities are affected on the order of 10-20%
- hadronic rescattering significantly changes chemical composition
- no chemical freeze-out at phase boundary

Flavor Dynamics: Radial Flow

- Hydro: linear mass-dependence of slope parameter, strong radial flow
- Hydro+Micro: softening of slopes for multistrange baryons
- early decoupling due to low collision rates
- nearly direct emission from the phase boundary

Freeze-Out: Direct Emission vs. Rescattering

example: pion sources in a string/hadron model

- decays from ρ, Δ₁₂₃₂, ω and K* give largest contribution
- secondary interactions and feeding dominate over direct production

Freeze-Out: Flavor Dependence

Au+Au, sqrt(s)=200 GeV

- > no sharp freeze-out: broad, flavor-dependent distributions
- only very small difference in lifetime from SPS to RHIC
 - use HBT as tool to investigate freeze-out behavior

HBT: QGP Lifetime vs. Hadronic Halo

- large R_{out}/R_{side} has been proposed as indicator of long-lived QGP
- inclusion of hadronic phase: only weak sensitivity to initial conditions
- long-lived dissipative hadronic phase dominates correlation signal
- dissipative hadronic phase: unavoidable consequence of thermalized QGP

Summary

Transport Models

- no single model ideally suited for entire reaction evolution
- different concepts/degrees of freedom needed for different reaction stages

Kinetic Evolution

- continuous evolution of momentum scale, coupling constant
- energy density larger than ε_{crit} even at the SPS
- Balance Functions may probe hadronization time
- Hadrochemistry and Flavor Dynamics
 - hadronic phase changes hadrochemistry and spectral shapes
 - radial flow sensitive to flavor dynamics
- Freeze-out
 - continuous, flavor-dependent process
 - HBT insensitive to early reaction stages probes hadronic halo